skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanade, Cyrus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundPersonalized hemodynamic models can accurately compute fractional flow reserve (FFR) from coronary angiograms and clinical measurements (FFR baseline ), but obtaining patient-specific data could be challenging and sometimes not feasible. Understanding which measurements need to be patient-tuned vs. patient-generalized would inform models with minimal inputs that could expedite data collection and simulation pipelines. AimsTo determine the minimum set of patient-specific inputs to compute FFR using invasive measurement of FFR (FFR invasive ) as gold standard. Materials and MethodsPersonalized coronary geometries ( N = 50 ) were derived from patient coronary angiograms. A computational fluid dynamics framework, FFR baseline , was parameterized with patient-specific inputs: coronary geometry, stenosis geometry, mean arterial pressure, cardiac output, heart rate, hematocrit, and distal pressure location. FFR baseline was validated against FFR invasive and used as the baseline to elucidate the impact of uncertainty on personalized inputs through global uncertainty analysis. FFR streamlined was created by only incorporating the most sensitive inputs and FFR semi-streamlined additionally included patient-specific distal location. ResultsFFR baseline was validated against FFR invasive via correlation ( r = 0.714 , p < 0.001 ), agreement (mean difference: 0.01 ± 0.09 ), and diagnostic performance (sensitivity: 89.5%, specificity: 93.6%, PPV: 89.5%, NPV: 93.6%, AUC: 0.95). FFR semi-streamlined provided identical diagnostic performance with FFR baseline . Compared to FFR baseline vs. FFR invasive , FFR streamlined vs. FFR invasive had decreased correlation ( r = 0.64 , p < 0.001 ), improved agreement (mean difference: 0.01 ± 0.08 ), and comparable diagnostic performance (sensitivity: 79.0%, specificity: 90.3%, PPV: 83.3%, NPV: 87.5%, AUC: 0.90). ConclusionStreamlined models could match the diagnostic performance of the baseline with a full gamut of patient-specific measurements. Capturing coronary hemodynamics depended most on accurate geometry reconstruction and cardiac output measurement. 
    more » « less